3.612 \(\int \frac{\sqrt{\sec (c+d x)} (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=152 \[ \frac{\sqrt{2} (a-b) (A-B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{(2 a B+2 A b-b B) \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{b B \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

[Out]

((2*A*b + 2*a*B - b*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) + (Sqrt[2]*(a - b
)*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) +
 (b*B*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.472165, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 54, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {4088, 4023, 3808, 206, 3801, 215} \[ \frac{\sqrt{2} (a-b) (A-B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{(2 a B+2 A b-b B) \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{b B \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((2*A*b + 2*a*B - b*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) + (Sqrt[2]*(a - b
)*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) +
 (b*B*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 4088

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d
*Csc[e + f*x])^n)/(f*(m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*
Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b*B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A,
B, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx &=\frac{b B \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{\sqrt{\sec (c+d x)} \left (\frac{1}{2} a (2 a A+b B)+\frac{1}{2} a (2 A b+2 a B-b B) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{a}\\ &=\frac{b B \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+((a-b) (A-B)) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx+\frac{(2 A b+2 a B-b B) \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx}{2 a}\\ &=\frac{b B \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}-\frac{(2 (a-b) (A-B)) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}-\frac{(2 A b+2 a B-b B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}\\ &=\frac{(2 A b+2 a B-b B) \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{\sqrt{2} (a-b) (A-B) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{b B \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.515238, size = 118, normalized size = 0.78 \[ \frac{\cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \left (2 (a-b) (A-B) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+\sqrt{2} (2 a B+2 A b-b B) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+2 b B \sin \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x)\right )}{d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],
x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(2*(a - b)*(A - B)*ArcTanh[Sin[(c + d*x)/2]] + Sqrt[2]*(2*A*b + 2*a*B - b
*B)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*b*B*Sec[c + d*x]*Sin[(c + d*x)/2]))/(d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.419, size = 515, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A*a+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/4/d/a*(1/cos(d*x+c))^(1/2)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(2*A*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-
2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*b-2*A*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*b+2*B*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(c
os(d*x+c)+1+sin(d*x+c)))*a-B*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin
(d*x+c)))*b-2*B*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*a+B
*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*b+4*A*cos(d*x+c)*a
rctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*a-4*A*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/
2))*b-4*B*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*a+4*B*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(
-2/(cos(d*x+c)+1))^(1/2))*b+2*B*(-2/(cos(d*x+c)+1))^(1/2)*b*sin(d*x+c))*(-2/(cos(d*x+c)+1))^(1/2)/sin(d*x+c)^2
*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [B]  time = 2.99421, size = 2589, normalized size = 17.03 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

1/4*(2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*A*sqrt(a) - 2*(sqrt(2)*log(co
s(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arct
an2(sin(d*x + c), cos(d*x + c))) + 1) - sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*a
rctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - log(2*cos(1/2*ar
ctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*ar
ctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + log(2*cos(1
/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1
/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - log(2*
cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*
cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + l
og(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqr
t(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2
))*B*sqrt(a) - 2*(sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - sqrt(2)*log(cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*
x + c))) + 1) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x
 + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), c
os(d*x + c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), co
s(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x +
c), cos(d*x + c))) + 2) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c
), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d
*x + c), cos(d*x + c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*
x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(
sin(d*x + c), cos(d*x + c))) + 2))*A*b/sqrt(a) - (4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2
*d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) + (cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*
arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*si
n(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x +
c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x +
 c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x +
 c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(
2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arct
an2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/
2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*s
qrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*
x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2
 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c), cos(d*
x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) +
 1) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(2*d
*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*B*b/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)
^2 + 2*cos(2*d*x + 2*c) + 1)*sqrt(a)))/d

________________________________________________________________________________________

Fricas [B]  time = 1.83382, size = 1563, normalized size = 10.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

[1/4*(4*B*b*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) - (2*B*a + (2*A - B)*b + (
2*B*a + (2*A - B)*b)*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2*
cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x
+ c)^3 + cos(d*x + c)^2)) + 2*sqrt(2)*((A - B)*a^2 - (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*l
og(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a
) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d), -1/2*(2*sqrt
(2)*((A - B)*a^2 - (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*c
os(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) - 2*B*b*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) - (2*B*a + (2*A - B)*b + (2*B*a + (2*A - B)*b)*cos(d*x + c))*sqrt
(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)
^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \sec \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt{\sec \left (d x + c\right )}}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(sec(d*x + c))/sqrt(a*sec(d*x + c) + a), x
)